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and show completely different properties for cation 
complexation and polar interactions (Mikes, Milat, Pugin 
& Blein, 1994; Mikes, Lavernet, Milat, Collange, Pftris & 
Blein, 1994). 
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Abstract 

Novel statistical and numerical methods of data analysis, 
which make extensive use of the estimated errors 
(e.s.d.'s) of the data are presented and applied to 
structure-correlation problems. The novel procedures 
concern both univariate (histogram representation, HR) 
and multivariate (cluster analysis, CA, and principal- 
component analysis, PCA) statistical techniques. In the 
case of HR, the problem of optimally selecting the 
dimensions of the spaces is bypassed by convoluting 
a series of normal functions. In the case of CA, a 
probability significance is given to the similarity between 
two (or more than two) objects. In the case of PCA, a 
cross-validation technique, which takes into account the 
e.s.d.'s of the row data, allows the determination of 
the dimensionality of the principal-component space, 
easy detection of outliers with respect to any principal 
component, and evaluation of a more comprehensive 
percentage of the variance described by the principal 
components. 

© 1995 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

I. Introduction 

An impressive growth of interest in structure-correlation 
studies appeared in the last two decades (Btirgi & Dunitz, 
1994; Auf der Heyde, 1994; Orpen, 1993; Biirgi, 1992; 
Ferretti, Dubler-Steudle & Biirgi, 1992; Domenicano, 
1992). This can be considered a consequence of two 
main factors: on one hand, structural determinations 
became very fast, and consequently the number of new 
structures increased; on the other hand, structural data 
have been organized in computer-readable databases 
(Allen, Bergerhoff & Sievers, 1987). 

Many papers have been published on data-treatment 
strategies (Taylor & Allen, 1994) and, in particular, 
certain interest has been focused on the importance 
and use of estimated standard deviations (e.s.d.'s) of 
the structural data [bond distances and angles, torsions, 
etc. (Taylor & Kennard, 1983, 1985, 1986; Mackenzie, 
1974; Hamilton & Abrahams, 1970, 1972; Abrahams & 
Keve, 1971; Abrahams, Hamilton & Mathieson, 1970)]. 
The importance of the e.s.d.'s is, in fact, crucial for 
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many aspects of structural analysis such as, for ex- 
ample, comparisons of different data sets, mean-value 
estimations, etc. Moreover, more extensive use of e.s.d.'s 
of the data in structure-correlation studies is advisable, 
since positional e.s.d.'s are included more and more in 
databases such as the Cambridge Structural Database 
(1991), although they have been disregarded in the past. 

In the present communication, the use of e.s.d.'s in 
some statistical techniques is described: histogram rep- 
resentation of the data (HR), cluster analysis (CA) and 
principal-component analysis (PCA) (Taylor & Allen, 
1994; Comincioli, 1992; Malinowski, 1991; Auf der 
Heyde, 1990; Robert, 1989; Everitt, 1980). The main 
tool of the present work is the design of mathematical 
procedures which are easily applicable to structural prob- 
lems. Each topic, HR, CA and PCA, will be discussed 
separately. Particular attention will be devoted to PCA, a 
more and more widely used statistical technique. All the 
calculations have been performed with locally written 
programs (Fortran77) on a MicroVAX 3100 computer. 

2. Histogram representations 

2.1. Discrete histograms 
Histograms are often used to describe the distribution 

of the values of a given variable (Taylor & Allen, 1994). 
One of the most important advantages of the histogram 
representation of the distribution is the ability to visu- 
alize its features (unimodal, bimodal, symmetric etc.). 
When a histogram is built, there are two fundamental 
problems. The first is how to select a 'grid division'. 
Fig. 1 shows how the descriptive ability of a histogram 
depends on the dimension of the spaces. A very small 
grid division [case (a), 0.002/~] implies a serrate profile; 
a very large grid division [case (f), 0.04 A,] shows a 
unimodal trend; a grid division similar to the mean value 
of the e.s.d.'s, which in the examined case is 0.009 A 
[case (d), 0.010/~], shows a bimodal trend. The second 
problem is the definition of space. A space ranging 
between two values dl and d2 can be defined as [dl,d2]; 
]dl,d2[; [dl,d2[ or ]dl,d2]. An observation of value dl 
would be classified in first and third space, but not in 
the other two. 

2.2. Integrated histograms 
In the case of structural parameters (distances, angles 

etc.), the two problems mentioned above can be solved 
rigorously, exploiting the fact that an e.s.d, is associated 
with each observation. 

An observed bond distance D of 1.50(1)/~ can be 
described by a continuous function, such as, for example, 
the normal distribution 

e(x) = [1/a(27r) 1/2] exp[-(x-d)2/2a2], (1) 

where d = 1.50A, and a = 0.01/~. In every space 
ranging between dl and d2, the probability of finding 

the observation D will be 

d l  
f P(x) dx. (2) 

d2 

Therefore, the observation D will be classified in ev- 
ery space dl-d2 in a measure proportional to (2). In 
other words, the occupancies in all the spaces of the 
histogram are considered. Fig. 2 shows another example. 
Note that this procedure recalls the theory of the fuzzy 
clusters (Comincioli, 1992; Miyamoto, 1990). There are 
essentially two advantages of the proposed method: 
(i) there is no longer the problem of selecting a grid 
division, but the spaces can be chosen as small as one 
wants, without the drawback of diminishing too greatly 
their mean population (this would produce very serrate 
discrete histograms; Figs. 3 and 4 show some examples); 
(ii) there is no longer the problem of defining space 
(open, closed etc.). 

2.3. Comparison between discrete and integrated 
histograms 

It is interesting to compare the discrete histograms 
with the integrated ones obtained with (1) and (2). Both 
discrete and integrated histograms have been built, with 
various grid divisions, for the examples reported in 
Fig. 3. In the case of the quinones, the grid division 
ranged between 0.0005 and 0.050 A,, in the case of the 
1,2-diaminobenzenes between 0.001 and 0.050/~,, and 
in the case of the dihydrazinophthalazines between 0.1 
and 4.0 ° . For each couple of histograms (discrete and 
integrated) Pearson's correlation coefficient (R) of the 
occupancies and their interdependence (a) have been 
calculated as 

a = Oi(integrated)/Oi(discrete ), (3) 

R - (Y~{[Oi(discrete) -- /Oi(discrete))] 

X [Oi(integrated ) -- (O/(integrated))]})  

~" ({Y~[Oi(discrete) -- (Oi(discrete))] 2 

× E[Oi(integrated)- (Oi(integrated))]2}l/2), (4) 

w h e r e  Oi(discrete ) a n d  Oi(integrated) are the populations of the 
ith space in the discrete and integrated histograms, and 
(Oi~discrete)) and (Oi<integrated)) are their mean values. Plot 
of a or R versus the normalized grid division (see Fig. 5) 
indicates that discrete and integrated histograms become 
almost identical only for normalized grid division higher 
than 1.0. This suggests that discrete histograms can 
be built with grid divisions not smaller than the mean 
e.s.d.'s of the data 

3. Cluster analysis 

3.1. Description of the method 
Cluster analysis (CA) is one of the principal tech- 

niques of data analysis. The problem one is expecting to 
solve by CA is the classification of objects in different 
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Fig. 1. Distribution of the values of  the C - - O  bond distances in the case of  o-benzoquinone derivatives (data from Carugo, Bisi Castellani, Djinovic 
& Rizzi, 1992); grid division (a) = 0.002; (b) 0.004; (c) 0.006; (d) 0.010; (e) 0.020 and 0O 0.040 A. Increase of grid division produces the 
loss of some detail, the distribution is changed from bimodal to unimodal. Vice versa a decrease of grid division makes the distribution more 
and more serrated, to such a point that the distribution does not appear clearly bimodal. 
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clusters on the basis of their similarity (Comincioli, 
1992; Everitt, 1980). The utility of CA in structure- 
correlation studies has been widely investigated (see for 
example, Taylor & Allen, 1994; Allen, Doyle & Taylor, 
1991a,b; Auf der Heyde, 1990; Norskov-Lauritsen & 
BUrgi, 1985). 

From a formal point of view, given an ensemble I = 
{I1, I2 . . . . .  lm} of m objects, each one identified by 
n variables, it is possible to define an m × n pattern 
matrix (m objects described by n variables), which is 
transformed into an m x m proximity matrix, T, where 
each element tij indicates the similarity between the two 
objects i and j. The proximity matrix T is then analyzed, 
in order to find which objects are similar, and which 
objects are different. The results of CA can be simply 
summarized as follows: similar objects will fall within 

the same cluster, while different objects will fall within 
different clusters. Two main problems arise: (i) how to 
define the proximity matrix T, that is, the definition of 
the similarity between the objects i and j, and (ii) how to 
discriminate between one (or two or more) cluster(s) of 
objects. Both problems have been extensively studied, 
but they seem intrinsically ill-defined. Consequently, 
the CA method of data analysis is inherently a rather 
ill-defined process (Taylor & Allen, 1994). 

The problem of defining a criterion of similarity 
between various objects is generally solved by the 
Minkowski metric, as described later (see next para- 
graph), although some attention has been devoted also 
to the Mahalanobis criterion of similarity. 

The problem of the clustering process can be solved 
by two main classes of algorithms: partitional and hi- 
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Fig. 2. The following values can be represented by a discrete histogram (a), (1) 1.29 (3); (2) 1.30 (3); (3) 1.30 (3); (4) 1.30 (3); (5) 1.30 (3); 
(6) 1.31 (2); (7) 1.32 (1); (8) 1.34 (1); (9) 1.34 (1); (10) 1.34 (1); (11) 1.35 (1); (12) 1.35 (1); (13) 1.35 (1). The integrated histogram is built as 
follows: (b) normal functions [equation (1)] for cases 1.29 (3) (observation number  1), 1.30 (3) (observations 2, 3, 4 and 5), 1.31 (2) (observation 
6), 1.32 (1) (observation 7), 1.34 (1) (observations 8, 9 and 10), 1.35 (1) (observations 11, 12 and 13); (c) normalized sum of  the curves reported 
in (b); (d) integrated histogram corresponding to the curve reported in (c). It appears that a bimodal distribution (a) becomes nearly unimodal 
(d): this means that the grid division used in (a) is too small to show a statistically significant trend. 
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erarchical. In the first case, the number of clusters to 
be found is assumed a priori  and, therefore, partitional 
clusterings are of  little utility for structure-correlation 
studies, where in general little is known about the 
structure of the data (if there are reasonable hypotheses 
on the data distribution or chemically reasonable precon- 
ceptions, the CA method becomes useless). Therefore, 
hierarchical clustering algorithms are preferred; these 
can be classified into two families: in the first (ag- 
glomerative), the m objects are initially distributed in 
m clusters, each of occupancy one, and larger clusters 
are then formed, on the basis of  the similarity between 
the objects; in the second, the m objects are initially 
grouped within one cluster, which is then divided into 
smaller subsets. 

Nevertheless, a hierarchical clustering process cannot 
be univocally defined. It is generally performed in steps; 
in each step it is necessary to decide if two clusters are 
similar; if m objects are analyzed, the maximum number 
of steps is m. There are various criteria to estimate 
the similarity of two clusters. If the two clusters have 
occupancy one, the problem is simply the comparison of 
two objects. If the two clusters are bigger, the evaluation 
of their similarity is quite ambiguous. The similarity can 
be taken as that of their nearest members (single-linkage 
or nearest-neighbor method), of  that of their furthest 
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~../ NH _ ~  
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C8 ~N2 

I 
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(c) 
Fig. 3. Summary of the data analyzed. (a) 146 crystal structures 

of o-benzoquinone derivatives (data from Carugo, Bisi Castellani, 
Djinovic & Rizzi, 1992); variable examined: C---O bond distance. 
(b) 28 crystal structures of 1,2-diaminobenzene derivatives (data from 
Carugo, Djinovic, Rizzi & Bisi Castellani, 1991b); variable examined: 
C - - N  bond distance; (c) six crystal structures dihydrazinophthalazines 
(data from REFC = ~ I C ,  HZPCBX, HPCXNI, DHYZAS10, 
DIGLIO, DUTCIRI0);  variable examined: N 1 - - N 2 - - C 8  and 
N2- -NI - -C1  bond angles. 

members (furthest-neighbor method), or that of their 
centroids (Ward's method). More complex procedures, 
such as the Jarvis-Patrick method for example, have 
also been proposed. It is apparent, however, that the 
clustering procedure is strictly dependent on the criterion 
selected for comparing two clusters. 

Another rather ambiguous point of a hierarchical 
clustering process is the determination of the optimum 
number of clusters. In general, the data can be structured 
in one of the following three ways: (i) all the m objects 
are similar; (ii) there are two or more distinct groups 
of objects; (iii) the m objects are quite dissimilar, but 
do not cluster well. In an agglomerative clustering of m 
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Fig. 4. Discrete and integrated histograms for the variables summarized 
in Fig. 3: (a) C---O bond distance in o-benzoquinone derivatives (grid 
division = 0.001/~,); (b) C - - N  bond distance in 1,2-diaminobenzene 
derivatives (grid division = 0.002/~); (c) N I - - N 2 - - C 8  and 
N2--N1----C1 bond angles of dihydrazinophthalazines (grid division 
= 0.1 o ). In all the plots, the grid division is too small for the discrete 
histograms, which show statistically insignificant trends; on the 
contrary, the same grid division does not prejudice the significance 
of the integrated histograms. 
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objects, the starting point is an m number of clusters, 
and the ending point is one cluster. Therefore, the 
agglomerative clustering cannot, by itself, distinguish 
which of the above three possibilities is the true one. 
Different procedures have been proposed in order to 
estimate the best number of partitions (such as, for 
example, the dependence of the dissimilarity of the 
clusters on the clustering step, or its derivative), but none 
of them does insure sound results. 

3.2. Proximity matrix versus probability 
A possible solution to the ambiguities of CA described 

above can be proposed by giving a statistical probabilis- 
tic meaning to the proximity matrix T. In this way, 
it would become possible to estimate the probability 
that two objects are identical and that a certain number 
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Fig. 5. Comparison between discrete and integrated histograms; depen- 
dence of the a factor [equation (3)] and of the Pearson's correlation 
coefficient [equation (4)] on the normalized grid division, obtained by 
dividing the actual one by the mean value of the e.s.d.'s: mean e.s.d.'s 
are 0.009 • for the C - - O  bond distance of o-benzoquinone deriva- 
tives, 0.017/~ for the C - - N  bond distance of 1,2-diaminobenzene 
derivatives and 0.71 ° for the N I - - N 2 - - C 8  and N2- -N1- -C1  bond 
angles of the dihydrazinophthalazines. It appears that both a and R 
approach 1.0 (that is, discrete and integrated histograms are identical) 
if the normalized grid division approaches 1.0 (that is a grid division 
near the mean e.s.d.) is chosen. 

of clusters is the optimum one. Of course, the results 
of clustering would still depend on the criteria used 
to estimate the similarity between two clusters. In the 
present paper, for the sake of simplicity, only the single- 
link criterion is presented, but the principles underlying 
the calculation of the proximity matrix keep their validity 
also if other clustering criteria are adopted. 

The tij elements of the proximity matrix T are gener- 
ally termed as similarity indices, and they describe the 
similarity between the objects i and j. The dimensions 
and the meaning of the tij values depend of course on the 
procedure adopted for calculating them. The elements of 
the proximity matrix T can be defined as 

tij = ~-~[(Xik - Xjk) /(O "2 "1- c r~) l /2] /n ,  ( 5 )  

according to the fundamental paper by Cruickshank & 
Robertson (1953), where xik and xjk are the values of the 
variable k in the case of the two objects i and j, and 
crik and crjk are their e.s.d.'s. The meaning of (5) can be 
assumed as follows: if tij is lower than 1.960, the two 
objects i and j are identical, if t 0 is bigger than 2.576 
they are significantly different, and if 1.960 < tij < 2.576 
their difference is possibly significant. The advantage of 
(5) is, therefore, the possibility to translate the proximity 
index in terms of probability. It is important to remember 
that 1.960 and 2.576 are just reference values generally 
accepted: they correspond to 95 and 99% significance, 
respectively. Although generally accepted, these values 
are completely arbitrary and different ones could be 
selected if desired. 

Alternatively, since a simple and general way to 
evaluate the statistical significance of the tij values is to 
divide them by their estimated errors cr(tij), the elements 
of T can be redefined as 

tij/cr( tij ). (6) 

The tij values are often calculated on the basis of the 
Minkowski metric 

tij = (Elxik - Xjklr) 1/r, (7) 

where r is a real number > 1.0. According to the rules 
of error propagation (Taylor, 1982), the error, cr(tij), on 
tij is defined as 

cr(tij) = (ES[c) [(1-r2)/r] E[S[c-1 (O.i 2 q_ O.j2k)l/2], (8) 

where Si, is defined as the absolute value of the differ- 
ence between xik and xjk. The interpretation of (6) in 
probability terms is analogous to that of the t-test of (5). 

3.3. An example 
24 independent structures of o-benzoquinone 

monooximes where analyzed (data from Carugo, 
Djinovic, Rizzi & Bisi Castellani, 1991a; Djinovic, 
Carugo & Bisi Castellani, 1992). Nine bond lengths 
were considered. A 24 x 9 pattern matrix was obtained, 
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and a 24 × 24 proximity matrix was treated. An 
agglomerative hierarchical algorithm was applied, 
together with the single-link criterion of similarity 
between two clusters. The clustering was not performed 
step by step (as described above: that is, by finding 
the lowest similarity index tij at each step), but by 
increasing the threshold values (that is, by considering 
the ith and jth objects within the same cluster if tij 
< threshold). The adopted procedure is presented in 
the Appendix I. Its advantage consists of the fact 

that two successive cluster fusions are discriminated 
by a difference in the threshold value, which can be 
interpreted in probability terms, and not just by a step, 
which is a simple serial number. The published values 
of the e.s.d.'s were multiplied by 1.5, according to 
Taylor & Kennard (1985). 

By analyzing the data with the Minkowski metric, 
and by ranging the exponent r between 1 and 20, it 
appears (see Fig. 6) that different clustering paths are 
followed, depending on the definition of the matrix T, 
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Fig. 6. Graph description of the clustering paths as a function of the similarity index. Left: proximity matrix built with equations (6)-(8) .  
Right: proximity matrix built with equation (7). From the top: Minkowski metric with exponent r = 1, 2 and 9. The clustering path clearly 
changes if the errors on the row data are considered. 
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i.e. by calculating its tij elements with (7) alone, or with 
(6)-(8). Moreover, the tij values calculated with (6)-(8) 
are generally smaller than those calculated with (7) alone 
(this comparison was performed by normalizing the tij 
values between 0.0 and 1.0; see Fig. 7 and Table 1). 

The probability ranking is not completely independent 
of the exponent r of the Minkowski metric. However, 
some common features, grossly independent of r, do 
appear. Fig. 6 shows, for example, that at a threshold 
level of 1.960 (95% probability level) the clusters in 
Table 2 are formed. Nevertheless, by increasing r, it is 
apparent that the probability that all the objects fall into 
the same cluster decreases. 

By analyzing the data with the t-test of (5), the 
clustering path of Fig. 8 is observed. It is closely similar 
to that obtained by Minkowski metric with exponent 
r = 1. For example, at a threshold level of 1.960, clusters 
(12) (13) (all the others) are formed. This result suggests 
that low exponents r should be preferred when the 
Minkowski metric is used in building the proximity 
matrix T. This is actually done in structure-correlation 
studies, where exponents 1 ('city-block' metric) or 2 
(Euclidean metric) are generally reported. 

In conclusion, the main advantage of the procedure 
proposed above is that the clustering assumes a probabil- 
ity meaning. In the reported example, independently of 
the algorithms used to build the proximity matrix T [(5), 
or (6)-(8)], there is very little probability (less than 5% at 
least) that the two quinone monooxime fragments 12 and 
13 fall within the same cluster of the other fragments. 
The same result can be obtained also by CA ignoring the 
e.s.d.'s of the data, but in that case it would only have 

Table 1. Data obtained from least-squares fit  

Mean  Mean  
absolute  absolute  

exp  r a R error  exp  r a R error 
1 0.73 (1) 0.7788 0.0967 9 0.65 (1) 0.7400 0.1105 
2 0.64 (1) 0.7414 0.1227 10 0.66 (I) 0.7419 0.1091 
3 0.58 (1) 0.7249 0.1358 11 0.66 (1) 0.7433 0.1079 
4 0.59 (i) 0.7228 0.1294 12 0.66 (1) 0.7444 0.1070 
5 0.61 (1) 0.7262 0.1234 13 0.67 (1) 0.7452 0.1063 
6 0.62 (1) 0.7305 0.1187 14 0.67 (1) 0.7458 0.1057 
7 0.63 (1) 0.7344 0.1151 15 0.67 (I) 0.7463 0.1052 
8 0.64 (1) 0.7376 0.1125 20 0.68 (1) 0.7477 0.1037 

Table 2. Clusters formed at a threshold level of  1.960 
(95% probability level) 

Exponent  r Clusters  
1 (12) (13) (all the others) 
2 (12) (13) (11) (14) (all theothers) 
9 (12) (13) (11) (14) (22,23) (6) (all theothers) 
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Fig. 7. Dependence of  the similarity indices calculated with equations 
(6)-(8) on those calculated with equation (7). The plot refers to the 
case with exponent  r = 1. If  the data are fitted by least-squares 
as  /equations (6)-48) = a/equation (7), the results in Table 1 are obtained, 
indicating that the elements of  the proximity matrix calculated with 
equations (6)-(8)  tend to be smaller than those calculated with 
equation (7). 
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Fig. 8. (a) Graph description of  the clustering path as a function of  
the similarity index [calculated with equation (5)]. Note that this 
graph closely resembles that obtained by the Minkowski  metric with 
exponent  = 1 (see Fig. 8, top left). (b) Relation between the number  
of  clusters obtained by the Cruickshank t-test [equation (5)] and that 
obtained by the Minkowski  metric [equations (6)-(8)]  with exponent  
= l ( I )  and = 15 (t2). Note that the clustering of  the Minkowski  metric 
with exponent  = 1 closely approaches that of  the Cruickshank t-test. 
If  the exponent  is set to 15, the clustering is faster. 
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been possible to conclude that fragments 12 and 13 are 
the most 'heterogeneous' fragments: it would have been 
impossible to judge the statistical significance of their 
'heterogeneity'. 

4. Principal-component analysis 

4.1. Description of  the method 
The utility of principal-component analysis (PCA) in 

structure-correlation analysis has been widely illustrated 
(see for example, Morton & Orpen, 1992; Auf der Heyde 
& BiJrgi, 1989a,b,c; Murray-Rust & Bland, 1978). PCA 
can be summarized in a simple way as follows (Taylor 
& Allen, 1994; Malinowski, 1991; Auf der Heyde, 
1990; Robert, 1989): m objects (for example m crystal 
structures) characterized by n variables (for example n 
structural parameters like interatomic distances, angles, 
etc.) can be represented by m points in an n-dimensional 
space, where each axis corresponds to one of the vari- 
ables; PCA transforms this n-dimensional space into a 
new one, where each axis describes the greatest part of 
the variance of the sample (the new axes are determined 
in the following order: the first represents the direction 
corresponding to the maximum variance, the second 
represents the direction of the maximum variance not 
described by the first, and so on). At the end of a PCA, 
the problem of determining the number of new axes 
sufficient to describe all the variance of the original 
sample arises. Of course, the n new axes can describe 
the totality of the variance, but it often appears that only 
a subset of k < n new axes is sufficient to describe the 
totality of the variance. 

The mathematical lexicon of the above procedure is 
as follows: the n new axes are the eigenvectors and the 
percentage of the total variance they describe is related to 
their corresponding eigenvalues. The couple consisting 
of an eigenvector and an eigenvalue is generally referred 
to as a component. The k < n components which are 
sufficient to describe the totality of the overall variance 
are the primary components, while the remaining ones 
are the secondary components. 

Such terminology derives from the mathematical 
apparatus performing principal-component analyses. An 
m x n data matrix, D (m objects characterized by n 
variables), is standardized by means of (9)-(I 1), in 
order to force all the variables to be distributed with 
zero mean and unit variance 

dn i j  = (di j  - ( d j l ) w j ,  (9) 

wj = [E((dj) - dij)2/(m - 1)] -1/2, (10) 

(dj) = ~dij/m, (11) 

where dij are the elements of D and dnij are the elements 
of the standardized data matrix DN. The n x n covari- 

ance matrix of DN, Z, which is the correlation matrix 
of D, is then computed with (12) 

Z = (DNTDN)/(n - 1), (12) 

and the eigenanalysis of Z [(13)], 

Z e i  = AiIei, (13) 

where I is the n x n identity matrix, produces n 
unique pairs of vectors ei (eigenvectors) and scalars 
)k i (eigenvalues). The m × n scores matrix, S, which 
contains the coordinates of the m objects within the n- 
dimensional space spanned by the n eigenvectors, is then 
obtained by (14) and (15), 

S = DN F, (14) 

F = CA 1/2, (15) 

where F is the n x n factor matrix, C is the n x n 
eigenvectors matrix (where each column is one of the 
eigenvectors, ei), and A is the n x n diagonal eigenval- 
ues matrix (where each element within the diagonal is 
one of the eigenvalues )~i, while the other elements are 
0.0). The cumulative variance percentage, Vk, described 
by the first k principal components is calculated with 
(16). 

k 

Vk = 100(~-'~ Ai)/n. (16) 
i = 1  

4.2. Primary and secondary components 
There are many procedures to discriminate between 

primary and secondary components (Malinowski, 1991). 
They can be grouped into three types: those disregarding 
the estimated errors on the data, those considering a 
mean error, and those taking into account the variability 
of the errors from one data point to the next. 

Among the procedures of the first type, there are many 
alternatives. Attention is limited here to the eigenvalue- 
one criterion, originally proposed by Kaiser (1960), and 
adopted for example by Domenicano, Murray-Rust & 
Vaciago (1983) to PCA of structural data. It is based 
on accepting all the components with eigenvalues above 
unity. 

Among the procedures considering only the mean 
error, crystallographers often adopt the method proposed 
by Murray-Rust & Bland (1978), defined by (17) 

k 
(~-]~ Ai)/n - 1 + ((e.s.d.)/(s.d.)) 2 = 0, (17) 

i = 1  

where (e.s.d.) is the mean value of the errors of the vari- 
ables, (s.d.) is the mean value of the standard deviation 
of the distribution of the variables, and Ai are the 
eigenvalues. The number of primary components is k, 
where k satisfies (17). A major drawback of (17) is 
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that it often occurs that the n variables of the m objects 
have very variable estimated errors. Moreover, in cases 
when among the variables there are both 'hard' structural 
parameters, like for example interatomic distances, and 
'soft' structural parameters, like bond angles, it would 
be impossible to compare the absolute values of their 
estimated errors as they are measured in different units. 
In these cases it can often appear that the number k of 
primary components is quite ambiguous, because of the 
high difference of (e.s.d.) among the variables. Other 
criteria for deducing the number of primary components 
which are closely related to that of (17), like for example 
the residual standard deviation method of the average 
error method (Malinowski, 1991), suffer from the same 
drawback of considering only the mean value of the 
estimated errors. 

Eventually, in order to understand the procedures 
for discriminating primary and secondary components 
which take into account the variability of the errors from 
one data point to the next, it is necessary to stress the 
background of PCA more. 

PCA has been developed mainly for social sciences, 
where the general problem is to decompose a series of 
data, the data matrix D into two subsets: one, the abstract 
row matrix R, indicates the 'true values' of the variables 
in each compound, and the other, the eigenvectors matrix 
C, indicates the 'true location' of the objects. Formally, 
the result of this decomposition can be resumed with (18) 

DN = Rk C/,, (18) 

where DN is the m × n standardized data matrix, Rk 
is the n x k abstract row matrix, Ck is the k x n 
eigenvectors matrix, and k is the number of primary 
components. The matrix Rk is obtained with (19) 

Rk = DN C r,  (19) 

and it is possible, therefore, for each value k with 
1 < k < n to obtain a calculated (and standardized) data 
matrix, DNCk, by means of (20) 

DNCk = RkCk. (20) 

The matrix DNCI, can finally be transformed into the 
calculated data matrix, DCk, by means of (9)-(11). 
Therefore, an approach to the discrimination between 
primary and secondary components can be based on the 
comparison between the original data matrix D and the 
calculated data matrix DCI,. It is of course easy to make 
this comparison dependent on the errors of the data. 

The most popular procedure for this is the X 2 criterion, 
originally proposed by Bartlett (1950). It is defined as 
follows. Given an m x n data matrix D, X 2 is calculated 
with (21) 

X~(calculated) = ~ [ ( d i j  - dcii)2/ai]], (21) 

where trij is the estimated error of dij, and dcij is the 

element of the calculated data matrix DCk. The value of 
X2(calculated) is then compared with its corresponding 
expected value, given by (22) 

X2(calculated) = (m - k)(n - k). (22) 

The number of primary components is the smallest k 
for which (23) is satisfied. 

x~(expected) /x~(calcula ted)  > 1. (23) 

Nevertheless, the X 2 criterion has never been applied 
in studies concerning crystallographic data. This is prob- 
ably justified by its abstractness with regard to structural 
chemistry, which makes it difficult to interpret its results. 
For this reason we designed a new procedure of dis- 
crimination between primary and secondary components, 
which makes extensive use of the estimated errors, 
being easily interpretable in terms of crystallographic 
information. This new procedure can be summarized as 
follows. 

4.3. Fitting percentage 

We can consider as primary components those relative 
to the k eigenvectors needed to calculate an abstract 
row matrix, R~,, that allows calculation of a calculated 
data matrix DCk which is not statistically different from 
the original data matrix D. The problem of comparing 
matrices D and DCk can be solved as reported by 
Cruickshank & Robertson (1953), by means of the t test 
[(24)] 

t = Idi j -  dc i j l /a i j ,  (24) 

where dij are the elements of D, trij are their estimated 
errors, and dcij are the elements of DCk. The meaning of 
(24) can be assumed as follows: the difference between 
dij and de 0 is not significant if t < 1.960. The percentage 
of the overall original variance that can be explained by 
the first k components is then expressed as the percentage 
of the elements of DCk that have t < 1.960 (this 
percentage will be referred to as FP, fitting percentage). 
As in the case of CA, it should be remembered that the 
threshold value 1.960 (95% of significance), although 
widely accepted, is completely arbitrary. 

It is also worth noting that: (i) the FP method allows 
evaluation of which variables and which objects re- 
quire an expansion of dimensionality of the principal- 
component space, in a simple and rapid way; (ii) it 
seems reasonable to substitute the cumulative variance 
percentage values Vk [(16)] with the FP ones, which 
offer the possibility of inclusion of the e.s.d.'s in the 
estimation of the percentage of the overall variance 
described by the principal components. 

An example of application of the FP method is 
given in the A p p e n d i x  II. Moreover, PCA's have been 
performed on the real cases summarized in Fig. 9. 
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4.4. Comparison between the FP and other methods 
discriminating primary components 

12 applications of a new procedure for discriminating 
between primary and secondary components have been 
described, and it is thus possible to compare this new 
procedure with those generally adopted, which have 
been described above. Results of the procedures for 
discriminating between primary and secondary com- 
ponents are summarized in Table S1 (Supplementary 

Material).* Table 3 shows the number of primary com- 
ponents, highlighted in each of the 12 examples, by the 
fitting-percentage method, the criterion defined by (17) 
(Murray-Rust & Bland, 1978), the X 2 criterion (Bartlett, 
1950), and the eigenvalue-one criterion (Kaiser, 1960). 

* Procedures for discriminating between primary and secondary com- 
ponents have been deposited with the IUCr (Reference NA0062). Copies 
may be obtained through The Managing Editor, International Union of 
Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 
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Fig. 9. Summary of the data submitted to PCA with FP procedure. All the published values of the e.s.d.'s were multiplied by 1.5, according to Taylor 
& Kennard (1985). A structure was considered as outliers: (i) if one of its structural parameters has a value deviating more than 3X from the mean 
value of this parameter, where X is the standard deviation of the distribution of this parameter (OUTX criterion) or: (ii) if one of the estimated 
errors of one of its structural parameters deviates more than 3Y from the mean value of the estimated c"ror of this parameter, where Y is the standard 
deviation of the distribution of the estimated errors of this variable (OUTY criterion). (a) o-Nitrosophenols. 24 crystallographically independent 
structures, characterized by the following variables: N1--OI, C1--N1, C2---O2, C1----C2, C3---C4, C4---C5, C5----C6 and C1---C6. Data from 
Djinovic et al. (1992) and Carugo et al. (1991a). Six outliers were detected by OUTX and OUTY methods. PCA performed both with and without 
outliers. (b) 1,2-Diaminobenzenes. 28 crystallographically independent structures, characterized by the following variables: C1--N1, C2--N2, 
C1---C2, C3---C4, C4---C5, C5---C6 and CI--C6. Data from Carugo (1994) and Carugo, Djinovic, Rizzi & Bisi Castellani (1991b). No outliers 
were detected. In order to take into account the intrinsic C2v symmetry of these molecules, the labels N 1 and N2, C 1 and C2, C3 and C6, and C4 and C5 
were permuted (Murray-Rust, 1982). (c) o-Benzoquinones. 146 crystallographically independent structures,characterizedby the following variables: 
C1---O1, C2----O2, C1---C2, C3--C4, C4---C5, C5---C6 and CI--C6. Data from Carugo, Bisti-Castellani, Djinovic & Rizzi (1992). Nine outliers 
were detected. In order to take into account the intrinsic C2v symmetry of these molecules, the labels Ol and 02, C1 and C2, C3 and C6, and 
C4 and C5 were permuted (Murray-Rust, 1982). (d) Dialkylsulfoxide complexes. 175 crystallographically independent fragments, characterized 
by the following variables: S---O, S---C1, S---C2, O---S----CI, O---S----C2 and CI--S---C2. Data from Calligaris, Faleschini & Carugo (1995). 
22 outliers were detected. The labels C1 and C2 were permuted in order to take into account the intrinsic Cs symmetry of the fragment. (e) 
Dihydrazinophthalazines. Six crystallographically independent fragments, characterized by the following variables: N I--N2, N1---C1, N2---C8, 
N3---C1, N3--N4, N5---C8 and N5--N6. Data from REFC = HPTNIC, HZPCBX, HPCXNI, DHYZAS10, DIGLIO and DUTCIE10. No outliers 
were detected. The labels NI and N2, CI and C8, N3 and N5, and N4 and N6 have been permuted in order to account for the C2v symmetry of 
the molecule (Murray-Rust, 1982). (f) Cu--Co-SOD (not shown in the figure). The backbone bond distances (N----Co, Cc~---C, C--O and C--N +) 
of the two monomers have been analyzed, for a total of 149 residues (the first and the last have been excluded). Data from Djinovic et al. (1992). 
No outliers were detected. Mean e.s.d.'s of 0.2/~ (Luzzati plot) or of 0.013/~, (Carugo, 1995) for all the variables were considered. 
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Table 3. Number of primary components pointed out by 
the various methods considered in the present article 

Fitting percent (FP), X 2, equation (17) (eq-176), and eigenvalue-one 
(2-one). 

FP X 2 eq-17 2-one 
o-Nitrosophenols* 6 5 1 4 
o-Nitrosophenolst 9 5 2 3 
1,2-Diaminobenzenes 5 1 1 3 
o-Quinones* 8 8 2 1 
o-Quinonesl" 8 8 2 2 
Dialkylsulfoxides* 6 6 4 2 
Dialkylsulfoxidest 6 6 4 2 
Dihydrazinophthalazines 4 4 2 3 
Cu-Co-SOD monomer 1 ~ 1 1 1 I 
Cu---Co-SOD monomer 1§ 2 1 1 1 
Cu-Co-SOD monomer 2~ 1 1 1 1 
Cu--Co-SOD monomer 2§ 3 1 1 1 

* With data rejection. 
t Without data rejection. 

With mean e.s.d. = 0.2,&. 
§With mean e.s.d. = 0.013 .~,. 

It appears that the results of the fitting-percentage 
method and of the X 2 criterion are quite similar: in seven 
cases out of 12 these two methods indicate the same 
number of primary components. It can be observed that 
they do not fit completely, but it should be remembered 
that they are integer numbers, and not floating-point 
real numbers, with the consequence that a perfect linear 
dependence is unlikely. Moreover, it can be observed 
that the discrepancies between the results obtained with 
the FP and the X 2 methods are overestimated. For 
example, in the case of the 1,2-diaminobenzenes, the 
X 2 method locates only one primary component, while 
the FP criterion locates five; however, in going from 
k = 1 to k = 5, the fitting percentage increases only very 
little, from 96.9 to 100.0. The same goes for other cases, 
where the FP method expands the dimensionality of the 
component space with respect to the X 2 criterion, only 
because of a small percentage gain. 

On the contrary, the results of the FP and X 2 methods 
are considerably different from those obtained by the 
other two methods [the criterion defined by (17) and 
the eigenvalue-one criterion], which do not consider 
extensively the estimated errors on the data. In particu- 
lar, it appears that the number of primary components 
indicated by the FP method is never smaller than those 
indicated by the other methods. Moreover, the method of 
(17) and the eigenvalue-one criterion give quite different 
results to each other, which is likely because of the fact 
that while the first one considers an average value of 
the estimated errors of the data, the latter completely 
disregards this kind of information. 

Therefore, it is possible to conclude that the extensive 
use of the information given by the estimated errors of 
the data significantly affects the determination of the 
number of primary components. The methods which 
consider the variability of the errors from one data point 
to the next can be considered as better, not only because 

they exploit a larger amount of information, but also 
because they generally increase the number of primary 
components and, therefore, decrease the possibility of 
disregarding significant components of low eigenvalue. 

4.5. Comparbon between the FP and V~ values 
Although the FP and the )~2 methods give closely 

similar results, the first has considerable advantages 
other than its simplicity. It gives a quantitative estimation 
of the data variance percentage that a given number of 
eigenvectors can describe; in other words, the fitting 
percentage is more informative than the cumulative 
variance percentage Vk defined in (16). 

Table 4 shows the fitting percentage and the cu- 
mulative variance percentage values for all the cases 
presented above. Two major features appear. On the one 
hand, the FP values always tend to be higher than Vk. On 
the other hand, as Vk increases, the difference between 
FP and Vk decreases. Both trends could indicate that 
the Vk values tend to underestimate the 'importance' 
of the first components with respect to the latter ones. 
However, since the cases reported above cover quite a 
wide range of structural data, it seems more reasonable to 
suppose that the errors on the data cause a sort of noise, 
hiding a part of the overall variance. In other words, 
the inclusion of the errors on the data results in a lower 
overall variance. An obvious consequence would be FP 
values higher than the Vk ones, especially for small Vk. 

4.6. Outlier detection with the FP method 
Another advantage of the FP method over the X 2 

approach is that it allows the easy detection of which 
data are responsible for the expansion of dimensionality 
of the component space. This can be seen from the 
following example, taken from the PCA of the first 
monomer of the Cu-Co-superoxide dismutase (SOD) 
(with e.s.d.'s = 0.013,&). This molecule consists of 
151 amino acids; 149 of them (the first and the last 
excluded) are characterized by the four peptidic bond 
distances N---Cc~, Co~-----C, C----4) and C - - N  +. The fitting 
percentage values of the first two components are 99.7 
and 100.0. Therefore, the number of principal compo- 
nents is two. Out of the 596 data, only two cannot 
be fitted by the first principal component: the N - - C a  
of the residue Cys6, and the Ca---C of the residue 
Arg126. It is apparent immediately, and easily, which 
variables and which object require expansion of the 
number of primary components from one to two, that 
is, require an expansion of dimensionality of the space 
spanned by the principal components. It is beyond the 
scope of the present article to discuss the chemical or 
biological relevance of the anomalies of these two data. 
However, it is important to note that these anomalies are 
statistically significant. It could also be observed, that the 
FP method could be useful in checking the correctness 
of crystallographic refinement. 
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Table 4. Comparison between the fitting percentage (FP) 
and the cumulative variance percentage [V k see equation 

o-Nitrosophenols* 

o-Nitrosophenolst 

1,2-Diaminobenzenes 

o-Quinones* 

o-Quinones? 

Dialkylsulfoxides* 

Diallojlsulfoxidest 

Dihydrazino- 
phthalazines 

Or--Co-SOD 
monomer 1~ 

(16)] values 
C o m p o n e n t  

1 
2 
3 
4 
5 
6 
7 
8 
9 

F P  
93.2 
93.8 
96.9 
98.1 
98.8 

100.0 
100.0 
100.0 
100.0 

80.6 
88.0 
94.4 
97.7 
99.5 
99.5 
99.5 
99.5 

100.0 

96.9 
96.4 
98.7 
99.6 

100.0 
100.0 
100.0 
100.0 

87.9 
89.1 
91.2 
93.6 
97.9 
98.1 
99.5 

100.0 

88.6 
91.0 
93.2 
96.5 
97.9 
98.3 
99.5 

100.0 

72.5 
79.6 
88.7 
89.0 
94.9 

100.0 

62.5 
81.3 
89.2 
90.9 
95.6 

100.0 

80.0 
87.1 
97.1 

100.0 
100.0 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 

v~ 
39.2 
58.6 
73.2 
84.5 
90.2 
95.3 
97.4 
98.8 

I00.0 

51.0 
73.3 
88.3 
92.2 
95.8 
97.4 
98.6 
99.5 

100.0 

37.9 
58.9 
73.0 
80.8 
87.9 
93.1 
96.8 

100.0 

57.6 
69.9 
78.8 
85.2 
90.7 
95.4 
98.0 

100.0 

53.2 
66.2 
87.0 
85.7 
91.1 
95.1 
97.8 

100.0 

41.8 
64.7 
80.5 
89.9 
95.6 

100.0 

39.5 
63.7 
78.4 
87.3 
94.7 

100.0 

35.9 
71.2 
88.3 
93.4 
97.0 
99.4 

100.0 

39.5 
62.4 
82.3 

100.0 

Cu--Co-SOD 
monomer 1§ 

Cu-Co-SOD 
monomer 2~ 

Cu-Co-SOD 
monomer 2§ 

Table 4 (cont.) 
C o m p o n e n t  

1 
2 
3 
4 

F P  
99.7 

100.0 
100.0 
100.0 

Vk 
39.5 
62.4 
82.3 

100.0 

1 100.0 39.2 
2 100.0 60.5 
3 100.0 81.1 
4 100.0 100.0 

1 99.2 39.2 
2 99.7 60.5 
3 100.0 81.1 
4 100.0 100.0 

* With  data rejection. 
~f Without  data rejection. 
:~ With m e a n  e.s.d. = 0.2 A.  
§With  mean  e.s.d. -- 0 .013,~.  

5. Concluding remarks 

A series of novel statistical techniques of data analysis, 
suitable for structure-correlation studies, have been pre- 
sented. They are justified since e.s.d.'s of the data contain 
an important part of the information given by the data 
themselves, and since most of the available statistical and 
numerical methods of data analysis (especially multivari- 
ate) were developed for applications in fields other than 
crystallography (for example, social sciences), in which 
no e.s.d.'s of the data are known or considered. The main 
results produced by the novel approaches to histogram 
representation, cluster analysis and principal-component 
analysis, can be summarized as follows. 

(i) Histogram representation: a novel method has 
been designed which solves the problem of selection 
of the correct grid division. It has been verified that the 
smallest grid division which can be selected in discrete 
histograms is the mean value of the e.s.d.'s of the data. 
Smaller grid divisions can be adopted only if integrated 
histograms are built. 

(ii) Cluster analysis: original guidelines for the cal- 
culation of the proximity matrix have been reported, in 
order to give a probabilistic meaning to the similarity 
indexes. 

(iii) Principal-component analysis: the proposed 
fitting-percentage method allows: (i) determination 
of the number of primary components, that is, the 
dimensionality of the principal-component space; 
(ii) detection of outliers with respect to a given 
number of principal components; (iii) evaluation of the 
percentage of the overall variance which is described, 
including the e.s.d.'s of the data. 

Acknowledgment is given to K. Djinovic, for help- 
ful discussions, and to MURST (Rome) for financial 
support. Also a referee is acknowledged for her/his 
contribution in making the text clearer. 
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APPENDIX I 
Example of hierarchical agglomerative clustering 

Given a proximity matrix T 

T = 
i 6 8 2 0 1 5 

1 0 10 
5 10 0 
3 9 4 

7 
3 
9 ,  
4 
0 

the subsequent agglomeration of the objects can proceed 
through different threshold values. For example, the first 
threshold can be 0, the second 1, the third 2, and so on. A 
series of threshold graphs is then obtained. For example, 
if a threshold of 1 is considered it appears that objects 
number 2 and 3 are similar and, therefore, belong to the 
same subset (and constitute nodes of a threshold graph), 
while all other objects are in different subsets. If a further 
threshold of 2 is considered, objects 2 and 3 continue to 
be in the same subset, a new subset is formed by objects 
1 and 4, while object 5 is alone. Three threshold graphs 
can be traced, one with two nodes, one with only one 
node. The overall procedure can be summarized by a 
dendrogram. It is up to the analyst to select a threshold 
value to stop the agglomerative clustering process. The 
number of clusters which will be formed depends on the 
threshold. 

Threshold Threshold graphs Dendrogram 

1 2 3 4 5 5 2 3 1 4 

2--3 i--4 5 
2--3--5 1--4 --J 
2--3--5--1--4 ----[---- 
2--3--5--1 --4 [ 
2--3--5--1--4 

(I) 

APPENDIX II 
Example of the application of the FP method 

Given the following data matrix D 

Ii 11 3 1 
D =  3 1 ,  

5 3 
3 2 

it is possible to calculate the eigenvalues matrix and the 
eigenvectors matrix C, by means of (9)-(13) 

2.040 0 0 
A = 0 0.683 0 , 

0 0 0.277 

C = 
0.612 -0 .393 0.687 • 
0.485 0.872 0.067 
0.625 -0 .292 -0 .724 

By means of (19) and (20) it is then possible to obtain 
the three calculated data matrices DCI, (with 1 < k < n), 

DC1 = 

DC2 = 

1.27 1.42 0.49 
2.48 2.67 1.70 
2.10 2.28 1.31 
3.73 3.96 2.91 
3.42 3.65 2.60 

1.41 1.04 0.58 
2.40 3.00 1.00 
1.87 2.92 1.61 
3.33 5.04 2.64 
3.99 1.99 3.01 

1.00 1.00 1.00 
3.00 3.00 1.00 
2.00 3.00 1.00 
3.00 5.00 3.00 
4.00 2.00 3.00 

DC2 = 

If the estimated errors on the elements of D are 

0.4 0.3 0.4 I 0.5 0.2 0.4 
0.6 0.4 0 . 2 .  
0.5 0.6 0.2 
0.4 0.3 0.3 

It appears that for k = 1 only the element dij, with 
i = 5 and j = 2, has a calculated value 3.65, which is 
statistically different from the original, 2.00; in fact 

t =  13.65 - 2 . 0 0 1 / 0 . 3  = 5 . 5 0 0  > 1 . 9 6 0 .  

Therefore, since just one element out of 15 is not 
reproducible with the first component, FP = 93.3%. 
For k = 2, it appears that all 15 elements of the data 
matrix D are statistically equivalent to the corresponding 
elements of the calculated data matrix DC2. Therefore, 
FP = 100.0% and the number of primary components is 
two. The cumulative variance percentage Vk [calculated 
with (16)] described by the first principal component is 
68.0%, while the FP value for the same component is 
93.3%. This indicates how underestimated the Vk values 
can be. It is, moreover, very easy to detect the only 
outlier with respect to the first principal component; the 
element dij with i = 5 and j = 2. 
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A b s t r a c t  

(2S) -3 - (3 ' , 4 ' -D ihydroxypheny l )a l an ine  (L-dopa), C9Hl l -  
N O  4, M r = 197.19, monocliniC,o P 2  l, a = 13 .619(6) ,  
b = 5 .232 (2), o 3 c = 6 .062 (3) A,  /3 = 97 .56  (4) °, 
V = 4 2 8 . 1 9 1 A ,  Z = 2 ,  D x = l . 5 2 9 g c m  -3, D m =  
1 . 5 1 5 g c m  -3 (T = 2 9 3 K ) ,  2 ( M o K c 0  = 0 . 7 1 0 6 9 A ,  
/.t = 1 . 2 c m  -1, F ( 0 0 0 )  = 208, T = 1 7 3 K ,  R ( F )  = 
0.017 for  4208 ref lec t ions  wi th  sin 0 / 2  < 1.078 ,~-~. The  
e lec t ron  dis t r ibut ion has  been  de t e rmined  by mul t ipo le  
ref 'mement  wi th  the H a n s e n / C o p p e n s  aspher ical  scatter- 
ing  fac tor  expans ion ,  inc lud ing  mul t ipo le  terms up to 

*Permanent address: Department of Chemistry, University of 
Durham, Durham DH1 3LE, England. 
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oc topoles  for  C, N and O and  up to d ipoles  for  H. T h e  
m o l e c u l a r  d ipole  m o m e n t  was  de t e rmined  as 12 ( 2 ) D ,  
wi th in  an e.s.d, o f  the ab initio value  repor ted  here  o f  
11 D. The  bond  cr i t ical-point  proper t ies  o f  the total 
e lec t ron  dens i ty  we re  de te rmined ,  g iv ing  nega t ive  
va lues  for  V2pc cons is ten t  wi th  cova len t  bonds ,  and 
are in fair  a g r e e m e n t  wi th  the ab initio results.  An  
analys is  o f  the h y d r o g e n - b o n d  cri t ical  points  gave  small  
pos i t ive  V2p values ,  cons is ten t  wi th  ionic,  c losed-she l l  
in teract ions  b e t w e e n  the par t ic ipat ing a toms.  A set o f  
theoret ica l  s t ructure factors  was  genera ted  f rom the ab 
initio cha rge  dis t r ibut ion and subjec ted  to mul t ipo le  
re f inement ,  to enab le  a m o r e  deta i led  compar i son  wi th  
exper iment .  
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